Follow:

Vapor-liquid equilibria below crossing-over using water lean solvents

DEA, MDEA, AMP

https://doi.org/10.1016/j.seppur.2020.118193

“In terms of pure chemical activity and reaction, shifting from an aqueous to a water-lean solvent seems to consistently depress the solubility of CO2, leading to a shift in equilibrium. This can be seen in practically all the experimental vapor–liquid equilibrium data compiled in Table 2Table 3Table 4, except when explicitly stated that the authors suspect the presence of a side-reaction involving the diluent itself.”

Table 2. Publications that show VLE data for water-lean solvents with MEA.

Reference Diluents Conditions and remarks
[34] NMP, PC, TMS C = 15% wt. MEA and T = 25, 100 °C for water-free NMP shown in graph form.
For other solvents, authors report equilibrium constants instead of raw data.
[22] NMP, PC Water-free
C = 5.1, 14.3 %wt. MEA
T = 25, 50 °C
[83] NMP Water-free
C = 15 %wt. MEA
T = 25, 50, 100 °C
[24][84] TMS Water-free
C = 15, 30 %wt. MEA
T = 30, 50, 100 °C
[57][85] MEG, PEG400 D = 15.3, 42.3 %wt. diluent
C = 15.3 %wt. MEA
T = 40, 60 °C
[31] Various C = 2.5 mol∙l−1 MEA and T = 20 °C for a huge array of water-free diluents shown in graph form.
C = 2.5 mol∙l−1 MEA and T =  − 50, −30, −10, 0, 10, 20 °C for water-free methanol shown in graph form.
[86] TEG Water-free
C = 0.1, 0.2, 0.3, 0.5 mol∙l−1 MEA
T = 30, 40, 50, 60,70, 80 °C
[87] Benzoic acid* D = 1, 2, 5 %wt. diluent
C = 14, 13, 10 %wt. MEA
T = 40 °C
[73] DEGDME Water-free
C = 15, 30, 45 %wt. MEA
T = 20, 30, 40, 50, 60 °C
[26] GLY D = 5, 10, 15, 20 %wt. diluent
C = 30 %wt. MEA
T = 40, 50, 60 °C
[88] MEG D = 1/1 MEG/water mass basis and water-free
C = 30 %wt. MEA
T = 40, 80 °C
[89] GLY The authors have designed their experiments so as to parametrize a model by using a central composite experimental design matrix. However, the most consistent set of data is at the conditions below:
D = 2, 4, 6 mol∙l−1 diluent
C = 2.5 mol∙l−1 MEA
T = 40 °C
[90] MEG, MeOH, NMP Water-free
C = 10, 20, 30 %wt. MEA
T = 30 °C
[18] CARB, NMP D = 1/3 in carbitol/water mass basis and 19/1, 3/1, 1/3 in NMP/water mass basis
C = 7 mol MEA∙kg solvent−1
T = 40 °C
[80] 2ME Water-free
C = 5 mol∙l−1 MEA
T = 40, 60, 80, 100, 120 °C
[91] 2EE, 2ME Water-free
C = 5 mol∙l−1 MEA
T = 40, 100 °C
[92] L92 D = 60 %wt. diluent
C = 10 %wt. MEA
T = 30 °C
[66] 1MIMI, DMSO, MEG, NMP, TMS D = 3/1 in diluent/water mass basis
C = 5 mol MEA∙kg solvent−1
T = 40 °C
[59] ACE, CC5, FA, GBL, MEG, MeOH, NMP, THFA, TMS A specific analysis of aqueous THFA solutions was performed at 40 °C with different THFA-MEA-water compositions.
However, the most consistent set of data is at the conditions below:
Water free
C = 30 %wt. MEA
T = 40, 80, 120 °C

*Benzoic acid is clearly not a proposed diluent for water-lean solvent formulation. Instead, the authors [87] proposed the addition of an acid to the rich amine for releasing CO2 at lower reboiler duty costs. The MEA-benzoate precipitates upon reaction and can then be mechanically separated, though at which cost the amine itself is recovered is not addressed. In a later publication they proposed oxalic acid instead of benzoic acid [93].

Table 3. Publications that show VLE data for water-lean solvents with DEA, MDEA, AMP.

Data for water-lean solvents with DEA
Reference Diluents Conditions and remarks
[22] NMP Water-free
C = 5.1, 14.3 %wt. DEA
T = 25, 50 °C
[62][94] MEG D = water-free, then approximately 20, 40, 60 and 80 %wt. diluent
C = approximately 1, 2 mol∙l−1 DEA
T = 25 °C
[24] TMS Water-free
C = 15 %wt. DEA
T = 30 °C
[83] NMP Water-free
C = 15, 30 %wt. DEA
T = 25, 50, 100 °C
[72] MeOH D = 10, 20, 30 %wt. diluent
C = 30 %wt. DEA
T = 25 °C
[95] MeOH D = 20, 40 %wt. diluent
C = 20, 40 %wt. DEA
T = 50, 60, 80, 100, 120 °C
[96] PEG200 Water-free
C = 30 %wt. DEA
T = 40, 80, 120 °C
Data for water-lean solvents with MDEA
Reference Diluents Conditions and remarks
[60] TMS The authors identify the formation of a second liquid phase at high CO2 loadings.
D = 30.5 %wt. diluent
C = 20.9 %wt. MDEA
T = 40, 100 °C
[97] MeOH D = water-free and 40 %wt. diluent
C = 40, 50 %wt. MDEA
T = 40, 100 °C
[98] TEGMME The authors identify the formation of a second liquid phase at high CO2 loadings.
D = water-free and 40 %wt. diluent
C = 40, 50 %wt. MDEA
T = 40, 100 °C
[99] EtOH The authors believe that nonaqueous MDEA can only act as a physical solvent. Therefore, they report Henry’s coefficients.
Water-free
C = 10, 20, 30, 50, 60, 70, 85, 100 %wt. MDEA
T = 20 °C
[100] MEG D = 60, 65, 70 %wt. diluent
C = 30 %wt. MDEA
T = 25, 40, 60, 90 °C
[78] ACEA, DACE, EC D = 5 %wt. diluent
C = 48 %wt. MDEA
T = 25, 30 °C
[101] PC The solvent developed by the authors has 0.05 %wt. of undisclosed activators.
D = 91.95 %wt. diluent
C = 6 %wt. MDEA
T = 25 °C
[102] TMS D = 0.36, 0.86, 1.36 mol∙l−1 diluent
C = 3.0, 2.5, 2.0 mol∙l−1 MDEA
T = 40, 55, 70 °C
[103] NMP The authors identify the formation of a second liquid phase at high CO2 loadings.
D = 50 %wt. diluent
C = 40 %wt. MDEA
T = 0, 25, 50, 75, 100, 125, 150 °C
[96] PEG200 Water-free
C = 30 %wt. MDEA
T = 40, 80, 120 °C
[46] EtOH Water-free
C = 15 %wt. MDEA
T = 40 °C
[66] 1MIMI, DMSO, MEG, NMP, TMS D = 1/1 in diluent/water mass basis
C = 3.5 mol MDEA∙kg solvent−1
T = 40 °C
Data for water-lean solvents with AMP
Reference Diluents Conditions and remarks
[79][104] TMS D = 32.2 %wt. diluent
C = 16.5 %wt. AMP
T = 40, 100 °C
[105] TMS D = 19.4, 27.7, 32.2, 41.2 %wt. diluent
C = 30.6, 22.3, 16.5, 8.2 %wt. AMP
T = 40, 60, 80, 100 °C
[106] DEG, TEG Water-free
C = 0.2, 0.4, 0.6 mol∙l−1 AMP
T = 30, 45, 60, 80 °C
[81] MEG Water-free
C = 0.4, 0.6, 1.0 mol∙l−1 AMP
T = 30, 45, 60, 80 °C
[107][108] NMP, TEGDME The precipitation of AMP-carbamate is observed for both diluents.
Water-free
C = 15, 25 %wt. AMP
T = 25, 50 °C
[109] NMP Precipitation was observed at pressures above 3 bars in some of the solvents.
D = 41.2, 32.2, 27.7, 19.4 %wt. diluent
C = 8.2, 16.5, 22.3, 30.6 %wt. AMP
T = 40, 60, 80 °C
[32] 1MIMI, 3DMAPN, 4H, CH, DMSO, PC, 1PeOH Precipitation was observed at 25 °C in all diluents minus 1MIMI and CH (which is solid at that temperature). Data at 25 °C is not given for CH. Data at 40 °C is not given for systems with 1MIMI, 4H and PC.
Water-free
C = 25 %wt. AMP
T = 25, 40 °C
[110] MeOH D = 41.2, 32.2, 27.7, 19.4 %wt. diluent
C = 8.2, 16.5, 22.3, 30.6 %wt. AMP
T = 40, 60, 80 °C

Table 4. Publications that show VLE data for water-lean solvents with other amines or blends.

Reference Amines Diluents Remarks
[25] DIPA TMS D = 40 %wt. diluent
C = 40 %wt. DIPA
T = 40, 100 °C
[34] DGA TMS, NMP, PC Authors report equilibrium constants instead of raw data.
[111] 2PDE TMS D = 10 %wt. diluent
C = 55 %wt. amine
T = 40, 100 °C
[112] TEA PC D = 2, 5, 10 %wt. diluent
C = 98, 95, 90 %wt. TEA
T = 10, 40 °C
[102] MDEA/PZ TMS D = 0.84, 0.68, 0.43 mol∙l−1 diluent
C = 1.68/0.84, 2.0/0.68, 2.5/0.43 MDEA/PZ in mol∙l−1
T = 40, 55, 70 °C
[113] AEEA BP, DEG, TEG The data for diluents DEG and TEG is provided only at 40 °C.
Water-free
C = 30 %wt. AEEA
T = 30, 40, 50 °C
[96] DGA PEG200 Water-free
C = 30 %wt. DGA
T = 40, 80, 120 °C
[114] EMEA 1BuOH, BP, DEEA, DEG, PEG200, TEG Water-free
C = 40 %wt. EMEA
T = 40 °C
[46] EMEA/MDEA EtOH D = 60, 65, 70, 75 %wt. diluent
C = 25/15, 20/15, 15/15, 10/15 EMEA/MDEA in %wt.
T = 40 °C
[115] MDEA/PZ TMS D = 10 %wt. diluent
C = 42/8, 45/5, 48/2 MDEA/PZ in %wt.
T = 40, 50, 60 °C
[116] 2FPEA OFP Water-free
C = undisclosed
T = 30, 40, 60, 80, 120 °C
[117] AMP/PZ 2EE D = 2.5 mol∙l−1 diluent
C = 2.5/0.6 AMP/PZ in mol∙l−1
T = 30 °C
[118][119] AMP/DMHDA TEG D = 2.0 mol∙l−1 diluent
C = 2.5/0.5 AMP/DMHDA in mol∙l−1
T = 30 °C
[66] 2MPZ 1MIMI, DMSO, MEG, NMP, TMS D = 1/1 in diluent/water mass basis
C = 2.5 mol 2MPZ∙kg solvent−1
T = 40 °C
[120] TETA, DEEA NMP The solvent exhibits separation of two liquid phases.
D = 46, 30, 25, 20 %wt. water content
C = 1/3 TETA/DEEA in mol∙l−1
T = 40, 50, 60 °C

Leave a Comment