Follow:

The scattering intensity (arb. units) over a range of d-spacing values during clay based CO2 capture

https://doi.org/10.1038/srep08775

“The layered nature of smectite clays gives rise to well-defined (00l) diffraction peaks and the angular position of these peaks is a direct measure of the interlayer repetition distance (the d-spacing). Figure 1 displays how the intensity of the (001) diffraction peak grows with time as the samples are exposed to CO2 at −20°C and 20 bar. All the samples were pre-dried before the measurements (see Methods section below). Intercalation of CO2 in the interlayer space manifests itself as the growth of an intercalation peak at a lower scattering angle (higher d-spacing) than the peak of dry, non-intercalated clay. As the intercalation progresses, the intensity of the CO2-intercalation peaks increase whereas the scattering from non-intercalated part of the sample decreases and eventually vanishes. LiFh and NaFh show similar intercalation behaviors in the X-ray diffractogram (XRD). The (001) peaks develop to d-spacings of 1.196 nm and 1.240 nm, for LiFh and NaFh respectively. This could correspond to a monolayer of intercalated CO2, in analogy to what occurs for H2O. For the NiFh sample we observe a similar intercalation state with d-spacing of 1.219 nm and in addition the development of another state with a larger d-spacing of 1.311 nm. To our knowledge, this is the first time such a complex CO2 intercalation state has been observed in a clay mineral, although other authors have found evidence of multiple intercalated layer type9,37. One may note that the secondary low-angle peak is at a d-spacing of ca. 1.3 nm, which is distinct from the ≈1.25 and ≈1.55 nm spacings of the one (1WL) and two water layer (2WL) smectite states as reported by Ferrage et al38,39. Other XRD studies have generally observed only blurred peaks in this region and have interpreted them as mixtures of peaks with the 1WL and 2WL spacings.”

WeChat-Image_20221010195022

“Figure 1 The scattering intensity (arb. units) over a range of d-spacing values at different times (hours), for LiFh, NaFh and NiFh, respectively. In all cases the CO2 adsorption conditions were −20°C and 20 bar. The red line () shows the time at saturation. Experiment performed at NTNU.”

Leave a Comment