Follow:

CO2 capture using monolithic MOFs

CO2 concentration and partial pressure

https://doi.org/10.1039/D1FD00017A

“To investigate the bulk density properties of the synthesised materials, we performed Hg porosimetry on the monolithic and powdered MOF materials (Table 1). We have shown previously that monoMOFs display higher bulk densities than powders and pelletised materials due to the exceptional control and close packing of the primary particles (i.e. crystallites) during the sol–gel synthesis. In turn, this leads to materials that maintain their porosity and performances and overcomes the limitations of traditional shaping techniques (i.e. pore collapse or low density due to high or low pressure, respectively, during the compression or pore blockage due to the use of binders). The bulk densities observed for monoHKUST-1 (ρbulk = 1.06 g cm−3), monoUiO-66 (ρbulk = 1.05 g cm−3), and monoUiO-66-NH2 (ρbulk = 1.25 g cm−3) were comparable to previous reports.57,58 In contrast, the bulk densities of the powdered materials were significantly lower for HKUST-1 (ρbulk = 0.5 g cm−3), UiO-66 (ρbulk = 0.56 g cm−3) and UiO-66-NH2 (ρbulk = 0.66 g cm−3). The lower density can be attributed to the poor packing, leading to large amounts of void space in the powder samples. When the bulk density is taken into account to calculate the volumetric BET area and volumetric total pore volume of each material (Table 1), the monolithic materials display significantly higher values compared to the powdered variants. In terms of performance, the monolithic materials display volumetric BET areas which are 79%, 48% and 150% higher for HKUST-1, UiO-66 and UiO-66-NH2, respectively, compared to their powdered variants.”

Materials SBET m2 g−1 VTota cm3 g−1 ρbulkb g cm−3 ρcrystal g cm−3 SBET m2 cm−1 VTot cm3 cm−3 Single component gas adsorption Dynamic breakthrough studies
CO2 uptake (0.15 bar) cm3 g−1 (cm3 cm−3) CO2 uptake (0.5 bar) cm3 g−1 (cm3 cm−3) SCNc (0.15 bar) SCM (0.5 bar) CO2 uptake 15/85 CO2/N2 cm3 g−1 (cm3 cm−3) CO2 uptake 50/50 CO2/CH4 cm3 g−1 (cm3 cm−3)
monoHKUST-1 1512 0.634 1.060 0.883 1603 0.672 18.5 (19.6) 53.8 (57.0) 23 12 21.3 (22.6) 53.3 (56.5)
powdHKUST-1 1871 1.290 0.500 0.883 936 0.645 23.8 (11.9) 76.2 (38.1) 24.7 (12.4) 61.7 (30.8)
pellHKUST-1c 1340 0.570 0.824 0.883 1102 0.470
monoUiO-66 1015 0.530 1.050 1.237 1066 0.557 14.9 (15.6) 33.1 (34.8) 28 36 15.2 (16.0) 42.0 (44.1)
powdUiO-66 1288 2.050 0.560 1.237 721 1.148 18.1 (10.1) 39.9 (22.3) 17.9 (10.0) 44.0 (24.6)
pellUiO-66d 1459 0.540 0.430 1.237 627 0.232
monoUiO-66-NH2 1226 1.040 1.250 1.246 1533 1.300 15.1 (18.9) 34.9 (43.6) 30 54 16.0 (20.0) 36.2 (45.2)
powdUiO-66-NH2 1094 0.941 0.660 1.246 722 0.621 17.2 (11.4) 39.7 (26.2) 17.6 (11.6) 38.6 (25.5)
pellUiO-66-NH2d 625 0.250 0.930 1.246 581 0.234

Leave a Comment