https://doi.org/10.1038/s41598-022-11830-4
“Endovascular treatment with stent retriever thrombectomy is a major advancement in the standard of care in acute ischemic stroke (AIS). The modalities through which thrombi embed along stent retriever following mechanical thrombectomy (MTB) have not yet been elucidated. Using scanning electron microscopy (SEM), we analyzed the appearance of thrombi retrieved by MTB from AIS patients, when embedded into the stent retriever. We observed that the organization and structural compactness vary for compositionally different thrombi. The modalities of attachment onto the stent vary according to thrombus composition and organization.”
”
Figures 1 and 2 are examples illustrating an RBCs rich thrombus incorporated into the stent. As thrombus spirals along the stent, its segments are anchored on single or multiple stent struts at a time—Fig. 1a,b. The RBCs rich thrombus segments display a compact core of polyhedrally shaped red blood cells and an outer layer formed of fibrin, characteristic for cerebral arterial thrombi23,24—Fig. 1c,d and Supplementary Fig. S1. The polyhedral shape of red blood cells is acquired due to compressive forces in vivo, during thrombus formation, and is considered a marker for intravital thrombus contraction25,26,27. The porosity of thrombus increases towards its periphery where platelets and white blood cells are also present along with fibrin. The segments of thrombus are interlinked by fibrin strings—Fig. 1e,f. The various modalities through which thrombus is incorporated into the stent are illustrated in Fig. 2. Protrusion of the stent through the thrombus (Fig. 2a,b; also Supplementary Fig. S2) occurs at sites with loose cellular packing, where the red blood cells are biconcave in shape. The thrombus can deform, wetting the stent surface—Fig. 2c,d. We also observed, between the double struts of the stent mesh, the existence of films, or bridges, of fibrin, with or without cellular content—Fig. 2e,f. It is unlikely that such fibrin bridges are native to the original thrombus that caused the stroke. Most probably, the bridges across the stent struts are formed during the retrieval process, and they potentially aid in securing the thrombus attachment.
Intermediate, compact thrombus
When embedded into the stent, intermediate thrombi are wrapped all around the struts and, in some cases, they clutch the struts. Illustrative examples are presented in Fig. 3 and in Supplementary Fig. S3. The compact organization of intermediate thrombi is illustrated in Fig. 4 and Supplementary Fig. S4. Intermediate thrombi can wet the surface of the stent, either at sites where peripheral fibrin is organized in parallel strings (Fig. 3d; Supplementary Fig. S3), with an overall flexibility and affinity for the stent surface, or when compact thrombus deforms and clutches the stent. Remnants of vascular tissue, found at the surface of retrieved thrombi, are illustrated in Supplementary Fig. S5. Supplementary Fig. S6 presents an intermediate thrombus trapped between the stent struts.
“